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Electromagnetic Interpretation of the Massless 
Spin-1 Field Equation in Curved Space-Time 

A n t o n i o  Z e c c a  I 

Received January 17, 1996 

The source-free Maxwell equations associated to the massless spin-I free field 
equation are considered in curved space-time. The gauge invariance of the theory 
is discussed by using as starting point the notion of the spinor potential. The 
structure of the electromagnetic field in the case of the Robertson-Walker space- 
time is discussed by using the solutions of the massless spin- 1 equations previously 
determined. The fiat-universe case of the standard cosmology is studied exactly 
and considered in some limiting physical situations. 

1. ~ T R O D U C T I O N  

The spinor formulation of the complete source-free Maxwell equations 
in curved space-time VlaFbr l = 0, VaF ~b = 0 can be expressed, as is well 
known, in terms of a symmetric massless spin-1 field ~b satisfying the equation 
vAA(~)A Bm. 0 (e.g., Penrose and Rindler 1986). The theory is established using 
as starting point a vector potential from which a tensor is constructed that 
is interpreted to represent the electromagnetic tensor field and that possesses 
the usual gauge invariance. The formulation is consistent in a general space- 
time and it does not suffer from the consistency problem of similar equations 
for higher spin (Buchdahl, 1958, 1962, 1982; Wtinsch, 1978; Penrose and 
Rindler, 1986; Illge, 1992). 

The potential can also be introduced in a general way in tensor form as 
directly associated to the spinor ~b, independent of the equations of motion 
and possessing the gauge invariance of the flat space-time model (Illge, 
1988, 1992). 

In this paper we reconsider the source-free Maxwell equation in spinor 
form along the line of the work by Illge. The theory is developed by taking 
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into account the standard 1-1 correspondence (given by the tr-matrices) 
between tensors and spinors. Some remarks on the gauge invariance of the 
theory are given and it is shown that the theory can always be described 
by spinor potentials corresponding not only to complex but also to real 
vector potentials. 

The structure of the electromagnetic tensor field is determined in the 
case of the Robertson-Walker space-time. The calculations are performed 
by using the separated solutions of the massless spin-I field equation obtained 
elsewhere (Zecca, 1996). The results are then applied to the standard cosmo- 
logical model for r, t near zero. In the flat RW space-time the solutions of 
the field equations can be given in a complete analytical form. As a conse- 
quence, the electromagnetic tensor can be obtained explicitly. In the case of 
the Einstein-deSitter model the physical situation relative to large r, t values 
is considered. 

2. PRELIMINARY RESULTS 

We recall some definitions and preliminary results concerning spinors 
and tensors in a four-dimensional space-time of class C ~ with metric signature 
(+, , , - ) .  Since we will deal with massless spin-1 field equations whose 
formulation is consistent in general, no further properties on the space-time 
manifold will be required. The standard 1-1 correspondence between complex 
tensors of rank n and spinors of type (n, n) will be denoted by ~.  The 
correspondence is provided by the Infeld-van der Waerden quantities CrUx 
having, among others, the properties 

~ .  o'~, O~a "o'~" A X (1) = " = 8~8r 

It is immediate that if At "* XAS, then 

A t = A t r XAR = ~,A (2) 

Another standard result concerns bivectors,  that is, real antisymmetric tensors 
of second rank. A second-order tensor F~k is a bivector if and only if its 
spinor equivalent has the form (Penrose and Rindler, 1986) 

F i t  ~* fl)aBE,~y -1- EABr " (3) 

where dp is a symmetric spinor. Moreover, if A I is the complex vector field 
equivalent to the spinor field XAX, then 

V [ i A  0 ~ I c ~-[eaaVc(~X~o - exrvzxa)z] (4) 

The relation easily follows by decomposing the expression VAX• -- VnVXAX 
into parts symmetric and antisymmetric in A, B (e.g., Pirani, 1964). 
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Proposition 1 (Illge, 1992). Let d~,~ B = d~aA be a given symmetric spinor 
field. Then there exist a divergence-free spinor field • (VAXXA x = 0) such that 

(~) AB = vXBxA~ (5) 

Conversely, if • is a spinor field satisfying the equation 

(I)AB : VX(BXA)X (6) 
and (.0 is a scalar function, then the spinor field 

f(A~" = XAX + VAX~O (7) 

satisfies equation (6), too. 

After Proposition 1 it is natural to call the spinor • satisfying equation 
(5) the potential of the field qb. The potential X is defined up to a gauge 
transformation generated by the scalar function (.0 as in equation (7). If also 

is required to be divergence-free, then (.0 is subject to the condition VlVlto 
= 0 as follows from equation (7), • being divergence-free. 

Even if the results of Proposition 1 do not make use of equations of 
motion, the analogy with the usual relation between the potential and the 
electromagnetic field is enlightening. Supported by the degrees of freedom 
of the gauge invariance, this analogy can be made more stringent. 

Proposition 2. The spinor potential of Proposition 1 can always be 
chosen to have both properties 

• = ~B, VAXXAX = 0 (8) 

Proof. Let XA;~ be a fixed divergent-free solution of equation (5) and let 
At be its vector equivalent. To obtain the result,_consider the gauge transforma- 
tion XA;~ = XAX + VAX "to and require ~ = Y~A- This implies XA;~ -- XXA = 
VeA~ -- VAXto or, in terms of the corresponding equivalent vectors, Ai - A; 
= Vi~ - V,~ = Oi(-~ - (.0). By setting bk = ~ A k ,  toE = ~to, we have that 
the gauge function is then subject to the constraint 

bk = - - 0 k t o 2  (9) 

The first condition of the proposition is therefore satisfied by choosing (.02 
to be a solution of equation (9), that is, 

i=14 fxi (.02 = - - E  bi(y) dyi (10) 

Consider now that 

VAX)(AX : VAXVAXto ~- VkVktol  + iVkVkto2 ((.01 = ~to) 

By using also equation (9) we have VkVkto2 = --Vkbk = 0 because XAX ~ At 
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and V k is a real operator. Therefore ~ x  is divergence-free, too, if and only 
if tot is a solution of V~Vkto~ = 0. �9 

Even with a potential having the properties (8), the theory is still invariant 
under a gauge transformation generated by a gauge function to subject to 
VkVk~Rto = 0, with ~to being taken fixed. 

Moreover, if the potential • satisfies the first condition (8), then by 
taking the complex conjugate of equation (6) we get 

Therefore, by combining equations (3), (4), (6), and (11) with At ~ Xax we have 

2Vt,Akl + Fik = 0 (12) 

which represents the connection of the field with the potential in tensor form. 

3. T HE SOURCE-FREE MAXWELL EQUATIONS 

The complete source-free Maxwell equations can be written in spinor 
form as 

V~bas  = 0 (13) 

d~ is a symmetric spinor. These equations are consistent in arbitrary curved 
space-time (WUnsch, 1978; Penrose and Rindler, 1986). If, according to 
Proposition 1, • is the spinor potential of the spinor dp, 

~AB : V~AXB)~ ( 1 4 )  

then as a consequence of equation (13) and the Ricci identities in spinor 
form, X satisfies the equation 

2 a VsV~zXA~Z) = 0 (15) 

and conversely if • satisfies equation (15), then ~b defined by equation (14) 
satisfies equation (13) (Illge, 1992). If one assumes the Lorentz gauge, that 
is, VAXXA x = 0 for the potential • (see Propositions 1 and 2), then equation 
(15) can he developed to give (Illge, 1992) 

V A~'VA~'xBS( -- 2[:IABX~ = 0 (16) 

and hence, in terms of the curvature spinors ~, X (e.g., Penrose and Rin- 
dler, 1986), 

VA~'VA?'xBX -- 2~saxtX a~ + 6A• = 0 (17) 

( A  ~ I "vAB'~ -~as), which is equivalent to 
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Vd~dAa -- gad Ad = 0 (18) 

AI ~ XA.~ and Rab is the Ricci tensor. Equation (18) represents the tensor form 
of the equation for the electromagnetic potential in a curved space-time. 

According to the previous considerations, the electromagnetic field can 
equivalently be described in tensor form by equations (18) and (12) or in 
spinor form by equations (13) and (17), and the spinor potential • can always 
be chosen as corresponding to a real vector potential. 

To complete the physical interpretation, we develop the expression 

Fab : O~a"~O~b~'((t)ABIE~ " + ~AB$.~") (19) 

using the generalized Pauli spin matrices 

1 ( na - m * ~  
= ~ --ma la / (20) 

{l", n i, m i, m *i} is the given null tetrad frame (e.g., Chandrasekhar, 1983). 
We get 

Fab = �89 + nbm*a) + ~ l l ( - -ma lb  + l,,mb) 

+ dpOl(nalb -- m*mb + m'~ma -- l,~nb) + CC} (21) 

a, b = O, 1, 2, 3. If one considers the Minkowski tetrad 

I a =-- (1/,/2)(1, O, O, 1) 

n a -- (1/,,/~)(1, O, O, --1) (22) 

m a --- (l/,f2)(O, I, --i, O) 

m *a =-- (1/,,/2)(0, 1, i, 0) 

then the (r-matrices (20) become the Pauli matrices modulo 1/4c2 and the 
corresponding F~/, components are interpreted to give by definition the electric 
and magnetic 3-vector fields E, B (e.g., Penrose and Rindler, 1986): 

Fo~ -�88 - ~b~t + ~ - ~-~) = E, 

Fo2 - ~ ( ~ , o o  + ~, ,t  - ~ - ~  - ~,--S) = E2 

Fo3 -- -�89 + ~ol) = E3 (23) 

Ft 2 = i - ~ (~o t  - % 0  = - a 3  
t Fl3 ------ -~'(dp00 + ~ + dpu + ~bu) = B2 

F23 ~ i --~6H - -  ~ l t  - -  % O  + ~00)  = - - a t  
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4. T H E  R O B E R T S O N - W A L K E R  S P A C E - T I M E  

The solution of  the theory developed in the previous sections could be 
done, in principle, by applying to equation (13) the generalized Kirchhoff-  
d 'Adhemar formula (e.g., Penrose and Rindler, 1986). An alternative way is 
directly in the line of  the Newman and Penrose (1962) formalism. By making 
use of the relation VAx = t~AxVQ and of  the explicit expression of  the covariant 
derivatives in terms of the tabulated spin coefficients (Chandrasekhar, 1983; 
Penrose and Rindler, 1986), we find that equation (13) is equivalent to 
a system of four coupled linear equations each of the first order in the 
directional derivatives. 

In the case of  the Robertson-Walker space-time of  metric 

g ~  = diag{ 1, -R2(t)/( l  - ar2), -RZ(t)r 2, -R2(t)r  2 sinZO } 

(a = 0, +-1) 

and by using the tetrad 

l . - - ~  1, 

1 ( 
n a =----~ l, 

R ) 
l _ ~ - - - S - ~ ,  O, 0 

R ) 
1 _x/i---Z- ~ , 0, 0 (24) 

rR 
ma =- ~ (0, O, - 1 ,  - i  sin 0) 

rR 
m* -- - ~  (0, 0, - 1 ,  i sin 0) 

such a system of equations can be explicitly integrated by a separation method 
that generalizes the Chandrasekhar-Teukolski procedure (Zecca, 1996). The 
separated solutions have the form 

r = ~bo(r)So(0) exp(imcp) T(t) 

d~ol = d~lo = d~l(r)Sl(O) exp(imtp) T(t) (25) 

d~tl = dp0(r)S2(0) exp(imcp) T(t), m = 0, _1 ,  ___2 . . . .  

B0 . t 

R(t) is determined by the underlying cosmological model; k is an integration 
constant. The explicit form of the real angular functions So, S~, $2 for a = 
0, 1, - I and of the functions d0~, 000 = d02 near r = 0 for a = --- 1 and in a 
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complete form for a = 0 can be found in Zecca (1996). Accordingly the 
electromagnetic field becomes 

R(t~l BoS~(0) { ( ~ a r  2 Jo : ' d t ' \  t~tt)] F,r = cos mq~ - k l ~-77;7.,.]~d~,(r) 

Ft~ ~ ~ 

~ , ,  = 

- sin(mq~ - k Ii ~)~d~l(r) } 

2R(t) r cos m~0 - k (So(0) - S2(0)),~tt~o(r) 

-sin(mq~-kfi~l(S~176 ,j 

2R(t) r sin 0 sin m~p - k (So(0) + S2(0))~ttq~o(r) 

+ cos(mtp - k Ii ~)(So(O) - S2(O))~Oo(r) } 

2 1 _x/i----Z- ~ cos mq~ - k ~ / ( S 0 ( 0 )  + S2(0))~R*0(r) r R(t )] 

- sin(mtp - k Is ~)(So(O) - S 2 ( 0 ) ) ~ o ( r ) }  

B~ r{sin(mq~ - k t dt' 0 - 

+ cos  m ~  - k ~ (So(0) + S2(0))~q~o(r) 

F04, = Bo ~in 0 Sl(O)r z sin mq~ - k ~ b l ( r )  

t dt' 
+ c o s ( m q ~ - k l o ~ ] 7 ~ ) ~ * , ( r )  t 

(26) 

The structure (26) now will be considered in special physical situations. 

(A) As mentioned above, the behavior of the spinor field near r = 0 
is known: 

~b a -- r t(4x2+l)u2-31r~ (d = 0, 1) (27) 
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h 2 = l(l + 1), l ---> Iml, l = 2, 3 . . . . .  If we now assume the cosmological 
background to be given by the standard matter-dominated cosmology, then 
(Kolb and Turner, 1990) 

Ko 
- -  t 112+1a116 (a = 0, _+1) (28) 

R(t) 1 / 2 -  la l /6  

for t ---) 0, Ka a constant. Therefore for small t, r equations (26)-(28) give 

-C01 $I(0) cos(mqo - Kakt l12-tal16) r [(4)'2+1)1t2-31/2 
Ftr tl12 + lal16 

Co2 
Fro  tl12+lal16 [So(0) - $2(0)] cos(mqo - Kakt It2-ial/6) r [(4x2+l)u2-1]/2 

Ft, C03 sin 0 tl/2+latl6 [So(0) + $2(0)] sin(mq~ - Kakt u2-1"u6) r [(4x2+l)lr2-1112 (29) 

Fro -- Ct2[So(0) + $2(0)] cos(mq~ - K.kt u2-1au6) r [(4x2+l)lt2-11/2 

Fr, ~ Cl3[So(0) - $2(0)] sin(mqo - Kakt u2-1au6) r [(4x2+l)la-1]/2 

Fo+ -- C23 sin 0 St(0) sin(mto - Kakt tr~-Iau6) r [(4xz+l)tt2+llt2, a = 0, __+1 

(B) The flat-universe case of the Robertson-Walker model can be treated 
exactly. For a = 0 we have (Zecca, 1996) 

d~d=e-ikrdp( (4h2 + 12 )U2 + 1 + d; 1 + (4hz + 1 )l/Z; 2ikr)rtt4xz+ l)ln-31t2 

(30) 

d = 0, 1, +(a; c; x) is the confluent hypergeometric function, and k is an 
integration constant. 

It is of some interest to consider the electromagnetic field for large r. 
By using the asymptotic behavior 

F(C) F(C............~) (__x)_a 
qb(a; b; x) ~ ~ gx  ~-c + F(c - a) 

(Abramovitz and Stegun, 1970), we have from a straightforward calculation 
that for large r, +a has the form 

d~d ~ An(k, k)r -2+d exp{i[kr + an(k)]} 
F(1 + (4h 2 + 1) t /2)  (2k)a_[(4x2+l)tn_+llc ~ (31) 

Ad = F((4h2 + 1)~i2/2 + 1/2 + d) 

~ r [  1 1 (4h2 + 1) 1 /2]  d = 0 , 1  eta = -~ d 2 2 
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Suppose now that R(t) is the one determined by the standard cosmological 
model with comparable contributions to the energy density from both matter 
and radiation (a = 0). Then for large t (Kolb and Turner, 1990) 

3 12/3 ' 
R(t) = Koo Ko constant (32) 

In the limit of both large t and r the electromagnetic tensor has therefore 
the behavior 

- A t  BoKo 
Fir 3r~3 cos(mq~ - kKo tl/3 + kr  + Oto) Sl(O) 

AoBoKo 
Fro 6rt2/3 {So cos(mtp - kKot I/3 + kr  + Oto) 

- $2 cos(mtp - kKo tl/3 - kr  - ct0) } 
AoBoKo sin 0 

F,~ 6rt~ 3 {So sin(rnq~ - kKo tl13 + kr + ao) 

+ $2 sin(rnq~ - kKot 113 - kr - a0)} (33) 

AoBo 
F,~ ~ ~ {So cos(mtp - kKo tIt3 + kr  + ao) 

2r 
+ $2 cos(rnq~ - kKot I/3 - kr  - et0)} 

AoBo {So sin(mq0 - kKo ttl3 + kr + ao) 
2--7- 

- $2 sin(mq0 - kKo tl/3 - kr  - a0)} 
Fo+ ~ AtBo  sin 0 Sl(O)r sin(mq~ - kKo tt/3 + kr  + Oto) 

The only term that in the considered limits does not approximate zero 
is Fe+, which indeed increases with r. This divergence is not a contradiction on 
physical grounds because our considerations are based on "monochromatic" 
solutions [see equations (25), (31)]. 

Finally we remark that the problem of  determining the potential • in 
equation (14) once d~ is a known given solution of  (13) does not seem to be 
easy. Also in .the Robertson-Walker model, by developing the right-hand 
side of  equation (14) as in Zecca (1996) one is left with a system of four 
coupled equations each of  the first order in the directional derivatives. These 
equations do not seem to be separable, even by assuming the known term ~b 
to have a separated form like that of equation (25). 
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